A frequency-independent boundary element method for scattering by two-dimensional screens and apertures

نویسندگان

  • D. P. Hewett
  • S. Langdon
  • S. N. Chandler-Wilde
چکیده

We propose and analyse a hybrid numerical–asymptotic hp boundary element method (BEM) for time-harmonic scattering of an incident plane wave by an arbitrary collinear array of sound-soft twodimensional screens. Our method uses an approximation space enriched with oscillatory basis functions, chosen to capture the high-frequency asymptotics of the solution. We provide a rigorous frequencyexplicit error analysis which proves that the method converges exponentially as the number of degrees of freedom N increases, and that to achieve any desired accuracy it is sufficient to increase N in proportion to the square of the logarithm of the frequency as the frequency increases (standard BEMs require N to increase at least linearly with frequency to retain accuracy). Our numerical results suggest that fixed accuracy can in fact be achieved at arbitrarily high frequencies with a frequency-independent computational cost, when the oscillatory integrals required for implementation are computed using Filon quadrature. We also show how our method can be applied to the complementary ‘breakwater’ problem of propagation through an aperture in an infinite sound-hard screen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media

Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...

متن کامل

A high frequency boundary element method for scattering by two-dimensional screens

We propose a numerical-asymptotic boundary element method for problems of time-harmonic acoustic scattering of an incident plane wave by a soundsoft two-dimensional (2D) screen. Standard numerical schemes have a computational cost that grows at least linearly with respect to the frequency of the incident wave. Here, we enrich our approximation space with oscillatory basis functions carefully de...

متن کامل

A New Guideline for the Allocation of Multipoles in the Multiple Multipole Method for Two Dimensional Scattering from Dielectrics

A new guideline for proper allocation of multipoles in the multiple multipole method (MMP) is proposed. In an ‘a posteriori’ approach, subspace fitting (SSF) is used to find the best location of multipole expansions for the two dimensional dielectric scattering problem. It is shown that the best location of multipole expansions (regarding their global approximating power) coincides with the med...

متن کامل

Application of Boundary Element Method to 3 D Submerged Structures With Open Ends (RESEARCH NOTE)

This paper presents a three dimensional application of direct Boundary-Element Method (BEM) for computing interaction of sinusoidal waves with a large submerged open bottom structure near the floor with finite depth. The wave diffraction problem is formulated within the framework of linearized potential theory and solved numerically with direct BEM. A computer program based on BEM is developed ...

متن کامل

Coupled BE-FE Scheme for Three-Dimensional Dynamic Interaction of a Transversely Isotropic Half-Space with a Flexible Structure

The response of structures bonded to the surface of a transversely isotropic half-space (TIHS) under the effect of time-harmonic forces is investigated using a coupled FE-BE scheme. To achieve this end, a Finite Element program has been developed for frequency domain analysis of 3D structures, as the first step. The half-space underlying the structure is taken into consideration using a Boundar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014